PROTOCOLO DE LEITURA DAS ENTRADAS

A Tabela 2 contém os caracteres que devem ser enviados para ler o status das entradas da CONTROLADORA.

Tabela 2: Leitura do status das entradas da placa

Comando enviado pela sua aplicação	Dados devolvidos pela controladora
ΕO	RETORNA "1" SE A ENTRADA e1 estiver com tensão entre 3V e 12V
	RETORNA "○" SE A ENTRADA £1 com tensão de o volt
	RETORNA "1" SE A ENTRADA £1 ESTIVER COM TENSÃO ENTRE 3V E 12V
E1	RETORNA "O" SE A ENTRADA E1 com tensão de o volt
Ei	RETORNA O CARACTERE MAIÚSCULO "C"

OBTENDO O STATUS DOS RELÉS

É possível obter o status de cada relé a qualquer momento. Para isso sua aplicação deve enviar os caracteres da tabela 3 e em seguida a CONTROLADORA retorna para o software o status do relé solicitado.

Tabela 3: Leitura do status dos relés da placa

Comando enviado pela sua aplicação	Dados devolvidos pela controladora	
R1	RETORNA "1" SE O relé i estiver ligado Retorna "o" se o relé i estiver desligado	
R2	RETORNA "1" SE O relé 2 estiver ligado Retorna "0" se o relé 2 estiver desligado	

Note que para todas as solicitações da tabela 1 e tabela 2 a controladora retorna "1" ou "0". Para que que o seu programa saiba o que este dado significa (se é o status da entrada ou do relé) é necessário criar uma variável global, como no exemplo anterior <code>EntradaLida</code> do tipo inteiro.

Então antes de fazer a solicitação de leitura de status utilize um identificador na variável:

LerEntrada = 0
MSComml.Output = "E0" 'Solicita status da entrada E0
LerEntrada = 1
MSComml.Output = "E1" 'Solicita status da entrada E1

No evento de recepção comEvReceive faça o teste:

If LerEntrada = 0 Then Label2.Caption = StrConv(Buffer, vbUnicode)
If LerEntrada = 1 Then Label3.Caption = StrConv(Buffer, vbUnicode)

Obs.: É necessário inserir o label3.

Deste modo é possível saber que o valor retornado pela CONTROLADORA refere-se ao status da entrada EO e depois E1.

LENDO SINAIS DE SENSORES CONTATO

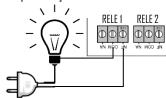
Os sensores de contato podem ser botões, chave fim de curso, contatos de relés, entre outros. Na figura ao lado temos o exemplo de instalação de um botão na entrada EO (E zero): Um dos terminais do sensor é conectado na entrada EO e o outro, na entrada GND (referência OV da CONTROLADORA).

A controladora oferece alimentação de +5V x 0.5A para sensores ativos, tais como: Sensor reflexivo, indutivo, barreira infravermelha, entre outros.

Observe na tabela 2, que para ler o status da entrada [**EO**] a sua aplicação deve enviar os caracteres "EO" via comunicação serial e em seguida ler a entrada serial aguardando a resposta da CONTROLADORA: será devolvido o caractere "1" se o botão estiver aberto (sem contato entre EO e GND). Se o botão estiver fechado (fazendo contato entre a EO e GND) então a CONTROLADORA devolverá o caractere "O".

LIGANDO/DESLIGANDO EQUIPAMENTOS

Esta secção apresenta o modo da instalação elétrica dos contatos dos relés para o controle de equipamentos elétricos.


ATENÇÃO

Nunca realize a instalação de equipamentos elétricos com a fiação energizada. **O choque elétrico pode ser fatal**. Se você não tem experiência na instalação de equipamentos não prossiga a instalação e solicite um técnico eletricista para que esta tarefa seja realizada com segurança.

Para ilustrar o controle de um equipamento eletrônico será utilizado uma lâmpada comum. Entretanto ela poderá ser substituída por qualquer equipamento elétrico conforme a secção Especificações Técnicas.

Neste exemplo a lâmpada irá ligar quando a aplicação acionar o RELE 1.

Neste exemplo a lâmpada irá **desligar** quando a aplicação acionar o RELE 1.

É possível também utilizar os contatos do relé para gerar pulso em equipamentos de terceiros, simulando através da sua aplicação que o usuário pressionou a botoeira de uma máquina, por exemplo.

CONECTAR AOS CONTATOS DA BOTOEIRA

Observação: O RELÉ 2 têm o mesmo funcionamento do RELE 1.

INFORMAÇÕES ADICIONAIS

Se a linguagem de programação que você utiliza não tem suporte para comunicação serial ou se você está com dificuldades para desenvolver esse recurso, poderá utilizar o **driver AppRele** desenvolvido pela Digitaq. Deste modo você executa o driver com a ação desejada através de parâmetros por linha de comando em qualquer versão do Windows. Por favor consulte o manual deste driver em www.digitaq.com.br

Os exemplos contidos neste manual estão escritos na linguagem Visual Basic 6 (VB6). Você pode baixar o Visual Basic 6 e exemplos de programas em www.digitag.com.br

Esta CONTROLADORA é compatível com todas as Versões do Visual Studio e Delphi. A Digitaq também dispõe de controladoras de 4/8 relés com comunicação USB, Serial e Ethernet. Utilize nossos canais de contato para obter mais informações destes produtos.

Manual de instalação

Controladora de Relés USB/Serial

GERAÇÃO 1

DIGITAQ CONTROLADORES ELETRÔNICOS

DIGITAD INDÚSTRIA DE CONTROLADORES ELETRÔNICOS

Gostou do nosso produto? Então visite-nos em:

www.digitag.com.br

Suporte e assistência técnica: digitaqeletronica@gmail.com (51) 4042-2828 (FIXD). (51) 99602-6897 (VIVD e WhatsApp)

APRESENTAÇÃO

Você adquiriu um produto fabricado no Brasil. Muito obrigado incentivar e fortalecer o desenvolvimento econômico e tecnológico nacional!

A placa **Controladora de Relés USB** tem como função básica ligar/desligar os relés a partir de comandos recebidos do computador. Além disso, a placa dispõe de 2 entradas digitais que podem receber sinais de sensores e processados pelo software, como por exemplo: Aguardar que o usuário pressione uma botoeira. Neste manual é apresentado o protocolo de comunicação da CONTROLADORA e o modo da conexão elétrica dos relés para que você possa desenvolver o seu software.

Cada relé é controlado por um dado específico vindo do computador, podendo este dado ligar ou desligar o respectivo relé; para ler as entradas digitas da placa o computador deve fazer a solicitação de leitura e em seguida aguardar o dado que será recebido, que é o status da entrada solicitada para leitura. Os sensores que podem ser conectados à CONTROLADORA são: botoeira de contato simples, chave fim de curso, sensores de contato seco em geral, barreira infravermelha, sensores com sinais de 3V a 24V.

ESPECIFICAÇÕES TÉCNICAS

- Conectividade: USB
- Velocidade de comunicação (baudrate): 300 bp/s
- Tipo de Entrada de pulso:
 Botoeira; Sensor NPN ou PNP; Contato Seco; Pulso de tensão 3V a 24V
- Tipo de Saída / Acionamento: RELÉ com contatos COMUM/NA/NF Corrente máxima: 7A, Tensão máxima: 220V
 Vida útil de cada relé: 300 mil a 3 milhões de comutações
- Alimentação: USB

 (A alimentação e os dados são fornecidos através da porta USB)
- Dimensões: Altura: 6cm; Largura: 10cm; Profundidade: 2,5cm

LED transmissão de dados LED sindicadores de relé ligado ou desligado RESET Conector USB Botão RESET Contatos dos relés Entradas de sensores digitais

INSTALAÇÃO DO DRIVER DA PLACA

Para que a placa seja reconhecida no sistema operacional Windows (todas as versões) é necessário **primeiramente:**

- baixar o driver em www.digitaq.com.br e na guia PRODUTOS localize o seu produto e clique no botão "Driver do Adaptador USB/Serial".
- Será baixado em seu computador o arquivo compactado em WinRar:
 Todos_Drivers_Adaptador_USB_Serial.rar
- Dê um duplo clique esquerdo no arquivo baixado e instale todos os drivers contidos no pacote de instalação. Pode ser necessário reiniciar o sistema.
- Conecte o cabo USB na CONTROLADORA e também na entrada USB do seu computador ou notebook.

Gerenciador de Dispositivos

✓ ♣ DIGITAQ

Arquivo Ação Exibir Aiuda

Adaptadores de rede

> 🔙 Adaptadores de vídeo

> Outros dispositivos

→ Portas (COM e LPT)

> Processadores

> Computador

> Monitores

? 📊 💯

> Mouse e outros dispositivos apontadores

Porta de comunicação (COM1)

▶ Prolific USB-to-Serial Comm Port (COM11)

Abra o Gerenciador de dispositivos de seu computador para conferir se o driver foi instalado corretamente (é necessário que a CONTROLADORA esteja conectada ao computador).

Localize a guia "Portas (COM e LPT) verifique se consta o dispositivo **Prolific-USB-to-Serial**

Isto significa que o driver está instalado corretamente e a placa foi detectada pelo Window

placa foi detectada pelo Windows.

Na imagem de exemplo acima o Windows especificou que a CONTROLADORA está conectada na porta USB "COM11", portanto sua aplicação deverá acessar essa porta. Se você conectar a CONTROLADORA em outra porta USB ou em outro computador, o Windows poderá determinar uma porta diferente (ex.: COM7). Por isso, há um recurso para informar à sua aplicação em qual

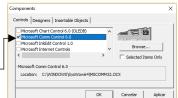
PROTOCOLO DE ACIONAMENTO DOS RELÉS

porta USB a CONTROLADORA está conectada.

Nesta secção são apresentados os comandos que podem ser enviados à CONTROLADORA para controlar os relés (o Driver deve ser instalado antes).

- Ajuste a velocidade da comunicação (Baudrate) da sua aplicação em 300 bps (essa velocidade baixa permite o uso de cabos USB longos);
- Selecione a porta COMx detectada pelo seu sistema operacional (Ex.: COM11);

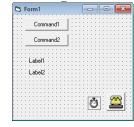
A seguir temos a tabelas de dados contendo os caracteres que devem ser enviados para controlar cada relé da CONTROLADORA.


Tabela de acionamento dos relés

Comando enviado	Ação na Controladora
1	LIGA RELÉ 1
2	DESLIGA RELÉ 1
3	LIGA RELÉ 2
4	DESLIGA RELÉ 2

CONTROLANDO O [RELÉ 1]

Observe que na tabela 1, o **RELE 1** é controlado quando a CONTROLADORA recebe os caracteres "1" e "2". Se a sua aplicação enviar o caractere "1" via comunicação serial então o **RELÉ 1** irá ligar. Se a aplicação enviar o caractere "2" o **RELÉ 1** irá desligar.


No Visual Basic 6 crie um projeto Standard EXE. Em seguida Clique no menu PROJECT>COMPONENTS e assinale a caixa **Microsoft Comm Control 6.0** e clique no botão OK

Adicione ao formulário:

- 1 objeto MSComm1 (ícone de telefone);
- 2 Command Button (Command 1 e Command 2);
- 2 Label (Label1 e Label2)
- 1 objeto Timer (Timer1)

Em seguida dê um duplo clique esquerdo no formulário para visualizar a tela de código e no Form Load() digite:


```
Dim LerEntrada As Integer
                            ' variável global
Private Sub Form Load()
  'Verifica se o programa e a placa já estão conectados:
  -If MSComm1.PortOpen = True Then
                                              ' se estiver conectado então
        MSComm1.PortOpen = False
                                              ' desconecta o software e a placa
   'Configura a Porta Serial do computador/notebook
   MSComm1.Settings = "300.n.8.1"
  MSComm1.DTREnable = True
   MSComm1.EOFEnable = False
   MSComml.Handshaking = comNon
  MSComm1.InBufferSize = 1
   MSComm1.InputLen = 1
  MSComm1.InputMode = comInputModeBinary
   MSComm1.NullDiscard = True
   MSComm1.OutBufferSize = 512
   MSComm1.RThreshold = 1
                               'Caracteres esperados para gerar a chamada OnComm
   MSComm1.RTSEnable = True
  Timer1.Interval = 300
    'Tenta abrir desde a COM2 , se houver erro (porta não existir)
    'prossegue tentando abrir a proxima porta até COM30 (2 a 30)
   On Error Resume Next
   For COMNumber = 2 To 30
                                         'tenta abrir desde COM2 até COM30
       MSComm1.CommPort = COMNumber
                                         'define porta COM conforme variavel 'COMNumber
                                         'tenta abrir a porta COMx
       MSComm1.PortOpen = True
       - If MSComml.PortOpen = True Then
           Labell.Caption = "Conectado em COM" & COMNumber
                                                             'Escreve Conectado em COMx
           Exit Sub
       End If
   Next COMNumber
End Sub
```

```
Static Sub MSComm1_OnComm()
Select Case MSComm1.CommEvent
Case comEvReceive 'Se a controladora enviar um dado ac
```

```
Select Case MSCommi.commEvent

Case comEvReceive 'Se a controladora enviar um dado ao PC

Buffer = MSComml.Input

If LerEntrada = 0 Then Label2.Caption = StrConv(Buffer, vbUnicode)

End Select

End Sub
```

```
Private Sub Timer1_Timer()
LerEntrada = 0
MSComm1.Output = "E0" 'Solicita status da entrada E0
End Sub
```